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Abstract. Limited angular resolution has become the main bottleneck
of microlens-based plenoptic cameras towards practical vision applica-
tions. Existing view synthesis methods mainly break the task into two
steps, i.e. depth estimating and view warping, which are usually ineffi-
cient and produce artifacts over depth ambiguities. In this paper, an end-
to-end deep learning framework is proposed to solve these problems by
exploring Pseudo 4DCNN. Specifically, 2D strided convolutions operated
on stacked EPIs and detail-restoration 3D CNNs connected with angular
conversion are assembled to build the Pseudo 4DCNN. The key advan-
tage is to efficiently synthesize dense 4D light fields from a sparse set of
input views. The learning framework is well formulated as an entirely
trainable problem, and all the weights can be recursively updated with
standard backpropagation. The proposed framework is compared with
state-of-the-art approaches on both genuine and synthetic light field
databases, which achieves significant improvements of both image quality
(+2 dB higher) and computational efficiency (over 10X faster). Further-
more, the proposed framework shows good performances in real-world
applications such as biometrics and depth estimation.

Keywords: View synthesis · Light Field · End-to-end
Pseudo 4DCNN

1 Introduction

As a revolutionary imaging technology, Light Field (LF) imaging [1,11,14,23]
has attracted extensive attention from both academia and industry, especially
with the emergence of commercial plenoptic cameras [16] and recent dedication
in the field of Virtual Reality (VR) and Augmented Reality (AR) [8]. With
additional optical components like the microlens array inserted between the main
lens and the image sensor, plenoptic cameras are capable of capturing both
intensity and direction information of rays from real-world scenes, which enables
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applications such as refocusing and 3D display. However, the inherent tradeoff
between angular and spatial resolution is inevitable due to the limited sensor
resolution, which restricts LF imaging in many practical vision applications.

One possible solution to this problem is view synthesis, which synthesizes
novel views from a sparse set of input views. Inspired by traditional view syn-
thesis approaches and recent success of data-driven methods, Kalantari et al.
[9] break down the goal of view synthesis into the disparity estimator and color
predictor modeled by convolutional neural network (CNN). Since disparities are
implicitly inferred from the first CNN, it obtains better results than other state-
of-the-art (SOTA) methods [12,21,22] that require explicit depth1 information as
priors for view warping. However, this framework is quite limited in reconstruct-
ing challenging LF scenes, such as occluded regions, non-Lambertian surfaces,
etc. Actually, depth-dependent view synthesis methods inevitably rely on the
accuracy of depth information, which tends to produce artifacts where inaccu-
rate depth estimation usually happens. Moreover, they mostly generate a single
novel view so that it is rather inefficient to synthesize all the in-between views.

Recently, Wu et al. [24] firstly model view synthesis as learning-based angular
detail restoration on 2D Epipolar Plane Images (EPIs). They propose a “blur-
restoration-deblur” framework without estimating the geometry of the scene. It
achieves superior results than Kalantari et al. [9] on a variety of scenes, even
in the occluded regions, non-Lambertian surfaces and transparent regions. How-
ever, their framework still has some shortcomings. Firstly, the full LF data is
underused since EPIs are just 2D slices of 4D LF. Secondly, it is quite time-
consuming because the operations of “blur-restoration-deblur” on EPIs loop
numerous times before all the in-between views are synthesized.

In fact, 4D LF data are highly correlated in ray space, which record abundant
information of the scene. The key insight of view synthesis for light field imaging
is to make full use of the input views. Unlike 2D array or 3D volume, it is
proved to be a tough problem working on the high dimensional data with CNN
currently. Therefore, there scarcely exist approaches that address the problem
of view synthesis in this way. In this paper, we propose an end-to-end learning
framework that efficiently synthesizes dense 4D LF from sparse input views.
Specifically, the learnable interpolation using 2D strided convolutions is applied
on stacked EPIs to initially upsample 3D volumes extracted from LF data. Then,
3D CNNs are employed to recover high-frequency details of volumes in the row
or column pattern. The angular conversion is introduced as the joint component
to transform from receiving output of row network to giving input of column
network. Moreover, a prior sensitive loss function is proposed to measure the
errors of synthesized views according to the level of received prior knowledge.
The learning framework is well formulated as an entirely trainable problem and
all the weights can be recursively updated with standard backpropagation.

Experimental results on a variety of challenging scenes, including depth vari-
ations, complex light conditions, severe occlusions, non-Lambertian surfaces and

1 depth and disparity are used interchangeably throughout the paper, since they are
closely related in structured light fields.
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so on, demonstrate that the proposed framework significantly outperforms other
SOTA approaches with higher numerical quality and better visual effect. By
directly operating on 4D LF data, the proposed framework also greatly acceler-
ates the process of view synthesis, over one order of magnitude faster than other
SOTA methods.

1.1 Depth-Dependent View Synthesis

Generally, depth-dependent view synthesis approaches synthesize novel views of
a scene in a two-step process [3,5], i.e. estimating disparities of the input views
and warping to the novel views based on the disparities, then combining warped
images in a specific way (e.g. weighted summation) to obtain the final novel
views.

Wanner and Goldluecke [22] propose the optimization framework to synthe-
size novel views with explicit geometry information, which only performs well for
synthetic scenes with ground truth disparities, but produces significant artifacts
for real-world scenes. The phase-based approach by Zhang et al. [28] reconstructs
LF from a micro-baseline stereo pair. However, it is quite time-consuming for
refining the disparity iteratively. The patch-based synthesis method by Zhang et
al. [27] decomposes the disparity map into different layers and requires user inter-
actions for various LF editing goals. Note that even state-of-the-art LF depth
estimation methods are not specifically designed to be suitable for pixel warping.
Thus view synthesis approaches that take explicit depth as priors usually fail to
reconstruct plausible results for real-world scenes.

To alleviate the need of explicit depth information for view-warping, another
strategy aims to synthesize novel views along with implicitly estimating the
geometry of the scene. Kalantari et al. [9] propose the first deep learning sys-
tem for view synthesis. Inspired by aforementioned methods, they factorize view
synthesis into the disparity estimator and color predictor modeled by CNNs.
Both networks are trained simultaneously by minimizing the error between the
synthesized view and the ground truth. Thus, the disparity for view-warping is
implicitly produced by the first CNN, which is more suitable for view synthesis
application. However, this method is quite limited in reconstructing challenging
LF scenes due to the insufficient information of warped images. Srinivasan et
al. [18] build on the pipeline similar to Kalantari et al. [9], and synthesize a 4D
RGBD LF from a single 2D RGB image. Overall, depth-dependent view syn-
thesis strongly depends on the depth information. For challenging scenes that
contain significant depth variations, complex lighting conditions, occlusions, non-
Lambertian surfaces, etc, where inaccurate depth estimation usually happens,
these methods tend to fail since the warped images are not able to provide
sufficient information to synthesize high-quality views.

1.2 Depth-Independent View Synthesis

Alternative approaches for view synthesis are to upsample the angular dimen-
sions without any geometry information of the scene. Some depth-independent
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methods are designed to process the input LF sampled in specific patterns. For
example, Levin and Durand [10] exploit dimensionality gap priors to synthesize
novel views from a set of images sampled in a circular pattern. Shi et al. [17]
sample a small number of 1D viewpoint trajectories formed by a box and two
diagonals to recover 4D LF. To capture input views in such specific pattern is
rather difficult, and thus these methods are still far from practical applications.

Many learning-based methods working on angular SR of LF have been pro-
posed recently. Yoon et al. [26] propose a deep learning framework called LFCNN,
in which two adjacent views are employed to generate the in-between view. In
the successive work [25], some modifications are applied to the network structure
but with the same input organization strategy as [26]. These methods can not
make full use of the angular domain as only a couple of sub-aperture images
around the novel view are fed into the network. Besides, it can only generate
novel views at 2X upsampling factor.

Wu et al. [24] model view synthesis as learning-based angular detail restora-
tion on 2D EPIs. A “blur-restoration-deblur” framework is presented that con-
sists of three steps: firstly, the input EPI is convolved with a predefined blur
kernel; secondly, a CNN is applied to restore the angular detail of the EPI
damaged by the undersampling; finally, a non-blind deconvolution is operated
to recover the spatial detail suppressed by the EPI blur. It achieves promising
results on a variety of scenes, but there are still some shortcomings: the potential
of the full LF data is underused; the operations of “blur-restoration-deblur” loop
numerous times before all the in-between views are synthesized.

To sum up, the key insight of view synthesis is to make full use of the input
views. To reduce the difficulty of collecting data, it is appropriate that the input
views are regularly spaced on a grid. Besides, it is rather difficult to work on the
high dimensional data with current CNN frameworks. In this paper, an end-to-
end framework called Pseudo 4DCNN is proposed to efficiently synthesize novel
views of densely sampled LF from sparse input views.

2 Methodology

2.1 Problem Formulation

In this paper, 4D LF data are denoted as L(x, y, s, t) decoded from the LF raw
image as depicted in Fig. 1. Each light ray is illustrated by the interactions with
two parallel planes, travelling from the angular coordinate (s, t) on the main lens
plane to the spatial coordinate (x, y) on the microlens array plane.

Given n × n sparse input views on a grid at the spatial resolution of H × W ,
the goal of view synthesis for LF imaging is to restore a more densely sampled
LF at the resolution of (H,W,N,N), where N = f × (n − 1) + 1 and f is the
upsampling factor in the angular dimension.

As shown in Fig. 1, EPI is a 2D slice of 4D LF by fixing one angular dimension
and one spatial dimension. The framework proposed by Wu et al. [24] is based on
restoration of 2D EPIs, enhancing one angular dimension s or t. 3D volume from
4D LF like Vt∗(x, y, s) can be extracted by fixing one angular dimension (t = t∗),
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which consists of stacked 2D EPIs. To directly process 4D LF, we assemble 2D
strided convolutions on stacked EPIs and sequential 3D CNNs connected with
angular conversion to build Pseudo 4DCNN. The proposed framework is well
formulated to be entirely differentiable, which makes the learning process more
tractable. In the next section, the proposed framework is described in detail.

Fig. 1. 4D light fields L(x, y, s, t). A horizontal EPI is a 2D (x, s) slice L(x, y∗, s, t∗)
by setting y = y∗ and t = t∗, and a vertical EPI (y, t) by setting x = x∗ and s = s∗.
By analogy, 3D volume Vt∗(x, y, s) can be extracted by setting t = t∗.

2.2 Proposed Framework

Overview. Given input sparse views L0(x, y, s, t) with the resolution of
(H,W,n, n) depicted as Fig. 2, we fix one angular dimension t = t∗, t∗ ∈
{1, 2, . . . , n} to extract 3D volume with the resolution of (H,W,n) as

Vt∗(x, y, s) = L0(x, y, s, t∗) (1)

Vt∗(x, y, s) are interpolated as Vt∗(x, y, s) ↑ to the desired resolu-
tion (H,W,N) given the upsampling factor. The high-frequency details of
Vt∗(x, y, s) ↑ are restored by the row network modeling as Fr(·), and then form
the intermediate LF as

Linter(x, y, s, t∗) = Fr(Vt∗(x, y, s) ↑) (2)

Next, we perform angular conversion to transform from the angular dimen-
sion t to dimension s. By fixing s = s∗, s∗ ∈ {1, 2, . . . , N}, Vs∗(x, y, t) are
extracted from Linter(x, y, s∗, t) as

Vs∗(x, y, t) = Linter(x, y, s∗, t) (3)

with the resolution of (H,W,n), which is also interpolated to Vs∗(x, y, t) ↑ at the
same resolution as Vt∗(x, y, s) ↑. The column network is then employed to recover
details of Vs∗(x, y, t) ↑, modeling as Fc(·). Finally, the output Lout(x, y, s, t) with
the resolution of (H,W,N,N) are formed as

Lout(x, y, s∗, t) = Fc(Vs∗(x, y, t) ↑) (4)
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Fig. 2. Overview of the proposed framework Pseudo 4DCNN. Take reconstructing 7× 7
LF data from 3 × 3 sparse views for example (n = 3, N = 7, t∗ = 3, s∗ = 2).

Learnable Interpolation on 3D Volumes. Volumes Vt∗(x, y, s) and
Vs∗(x, y, t) consist of two spatial dimensions and one angular dimension as Fig. 1.
Take Vt∗(x, y, s) as an example, they can be regarded as n sub-aperture images
with the resolution of (H,W ), and are also composed of W stacked EPIs with
the resolution of (H,n). Long et al. [13] state that upsampling can be performed
using fractionally strided convolution. By reversing the forward and backward
passes of convolution, the interpolation kernel for upsampling can be learned
through end-to-end training with backpropagation. Rather than fixed interpola-
tion on a single EPI, we introduce the learnable interpolation on stacked EPIs
in 3D volumes using a deconvolutional layer as

Vt∗(x, y∗, s) ↑= deconv(Vt∗(x, y∗, s), f,Kr) (5)

where Vt∗(x, y∗, s) is a 2D EPI slice inside the 3D volume Vt∗(x, y, s) by fixing
y = y∗, f is the desired upsampling factor and Kr is the learnable kernel.

Another deconvolutional layer is employed to upsample Vs∗(x, y, t) as

Vs∗(x∗, y, t) ↑= deconv(Vs∗(x∗, y, t), f,Kc) (6)

As deconvolutional layers are differentiable, the learnable interpolation
enables the proposed framework to be trained in an end-to-end strategy.

Detail Restoration Using 3D CNNs. 3D Convolutional Neural networks
[15,19] are mostly applied to extract spatio-temporal features among frames for
video analysis. Instead, we employ 3D CNNs and the residual learning [6] to
recover high-frequency details of 3D volumes extracted from 4D LF.

In order to ensure efficiency, the proposed network Fr(·) and Fc(·) are of the
same structure, which is lightweight and simple. As depicted in Fig. 3, both net-
works consist of two hidden layers followed by the sum of the predicted residual
�(V ) and the input volume V as F (V ) = V + �(V ). The first 3D convolutional
layer comprises 64 channels with the kernel 5 × 5 × 3, where each kernel operates
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Fig. 3. Structure of the network for recovering details of 3D volumes. Layer 1 and layer
2 are followed by a rectified linear unit (ReLU). The final detail restored volume is the
sum of the predicted residual and the input.

on 5 × 5 spatial region across 3 adjacent views inside V . Therefore, the size of
filters W1 in the first layer is 64 × N × 5 × 5 × 3 and the size of bias b1 is
64. Similarly, the second 3D convolutional layer comprises 32 channels with the
kernel 1 × 1 × 3, where each kernel operates on 1 × 1 spatial region (i.e. single
pixel) across 3 adjacent slices of feature maps of the first layer. The size of filters
W2 in the second layer is 32 × 64 × 1 × 1 × 3 and the size of bias b2 is 32.
The output layer of the network for the residual prediction utilizes 9 × 9 × 3
filter, and thus the size of filters Wo in this layer is N × 32 × 9 × 9 × 3 and
the size of bias bo is N. Note that the first and second layers are activated by
the rectified linear unit (ReLU), i.e. σ(x) = max(0, x), while the output layer is
not followed by any activation layer. The residual prediction is formulated as

�(V ) = Wo ∗ σ(W2 ∗ σ(W1 ∗ V + b1) + b2) + bo (7)

where ∗ denotes the 3D convolution operation. To avoid border effects, we appro-
priately pad the input and feature maps before every convolution operations to
maintain the input and output at the same size.

Prior Sensitive Loss Function. The proposed framework is designed to
directly reconstruct the desired 4D LF. Rather than minimizing the L2 dis-
tance between a pair of synthesized and ground truth images in [9] or between
a pair of detail restored and ground truth EPIs in [24], the prior sensitive loss
function is specifically formulated as follows:

E =
1

2N2

N∑

s∗=1,t∗=1

ws∗t∗‖Lgt(s∗, t∗) − Lout(s∗, t∗)‖2 (8)

where the loss E is a weighted average over the entire mean squared errors (MSE)
between the reconstructed Lout and ground truth Lgt.

Novel views generated in the later stage of the pipeline receive less prior infor-
mation from the sparse input views as shown in Fig. 2. For instance, synthesized
views after the row network Fr(·) are inferred from the input views, while a por-
tion of those views synthesized after the column network Fc(·) only receive prior
information propagated from earlier synthesized views. Hence, we design a prior
sensitive scheme which pays more attention to the errors of the later synthesized
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views by using larger weights. According to the order that views are generated
and the level of received prior knowledge, all the synthesized views are divided
into four groups and their MSE against the ground truth are summed up with
corresponding weights. The weighting coefficient ws∗t∗ for the synthesized view
at (s∗, t∗) is particularly set as

ws∗t∗ =

⎧
⎪⎪⎨

⎪⎪⎩

λ1 s∗ ∈ [1 : f : N ], t∗ ∈ [1 : f : N ]
λ2 s∗ ∈ [1 : f : N ], t∗ /∈ [1 : f : N ]
λ3 s∗ /∈ [1 : f : N ], t∗ ∈ [1 : f : N ]
λ4 s∗ /∈ [1 : f : N ], t∗ /∈ [1 : f : N ]

(9)

Empirically, λ1, λ2, λ3, λ4 are set to 0.1, 1, 1 and 2 relatively.

Derivation on End-to-End Training. As the proposed system comprises 2D
strided convolutions and detail-restoration 3D CNNs connected with angular
conversion, it is non-trivial to train the networks with standard backpropagation.
We analyze in detail that the proposed framework is entirely differentiable and
all the weights can be recursively updated with standard backpropagation.

Firstly, we calculate the partial derivative of the loss E with respect to the
intermediate LF Linter(x, y, s, t) using chain rule as

∂E

∂Linter(x, y, s, t)
=

∂E

∂Lout(x, y, s, t)
· ∂Lout(x, y, s, t)
∂Linter(x, y, s, t)

(10)

according to Eq. 8, the first term on the right-hand side of Eq. 10 is derivable.
The second term can be derived as

∂Lout(x, y, s, t)
∂Linter(x, y, s, t)

=
N∑

s∗=1

∂Lout(x, y, s∗, t)
∂Vs∗(x, y, t) ↑ · ∂Vs∗(x, y, t) ↑

∂Vs∗(x, y, t)
(11)

The partial derivative of Lout(x, y, s, t) with respect to Linter(x, y, s, t) is the
sum of N partial derivatives of Lout(x, y, s∗, t) with respect to Vs∗(x, y, t). The
first term on the right-hand side of Eq. 11 is apparently differentiable since it is
the partial derivative of the output of the column network Fc(·) with respect to
its input as Eq. 4. Further, the second term can be derived as

∂Vs∗(x, y, t) ↑
∂Vs∗(x, y, t)

=
H∑

x∗=1

∂Vs∗(x∗, y, t) ↑
∂Vs∗(x∗, y, t)

(12)

the term on the right-hand side attributes its partial derivative to upsampling
on EPIs using the learnable interpolation as Eq. 6. At this point, we have proved
that the term on the left-hand side of Eq. 10 is differentiable.

The angular conversion operates on Linter(x, y, s, t) to transform from receiv-
ing output of the row network Fr(Vt∗(x, y, s) ↑) to giving input of the column
network Vs∗(x, y, t), and thus there are no parameters in this component. Next,
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we calculate the partial derivative of Linter(x, y, s, t) with respect to the input
sparse LF L0(x, y, s, t) as

∂Linter(x, y, s, t)
∂L0(x, y, s, t)

=
n∑

t∗=1

∂Linter(x, y, s, t∗)
∂Vt∗(x, y, s) ↑ ·∂Vt∗(x, y, s) ↑

∂Vt∗(x, y, s)
(13)

Similarly, it can be deduced that the first term on the right-hand side of
Eq. 13 is differentiable because the numerator and the denominator of this term
correspond exactly to the output and input of the row network Fr(·) as Eq. 2.
The second term can be further derived as

∂Vt∗(x, y, s) ↑
∂Vt∗(x, y, s)

=
W∑

y∗=1

∂Vt∗(x, y∗, s) ↑
∂Vt∗(x, y∗, s)

(14)

the term on the right-hand side of Eq. 14 is also differentiable since Vt∗(x, y∗, s) is
upsampled to Vt∗(x, y∗, s) ↑ by the learnable interpolation as Eq. 5. Overall, the
partial derivative of the loss E with respect to the input L0(x, y, s, t) is derived
as

∂E

∂L0(x, y, s, t)
=

∂E

∂Linter(x, y, s, t)
· ∂Linter(x, y, s, t)

∂L0(x, y, s, t)
(15)

Considering Eqs. 10 and 13, it can be concluded that the proposed frame-
work is entirely differentiable. Due to space limitations, formulations about the
gradients of upsampling kernels and weights in the row or column network are
not presented here.

2.3 Training Details

To train the proposed framework, we take over 300 LF samples with various
lighting conditions, texture properties and depth variations through Lytro Illum
and the lab-developed LF camera under indoor and outdoor environment. The
LF raw images are decoded via Light Field Toolbox v0.4 [4]. LF images captured
by Lytro Illum are with the spatial resolution 625 × 434 and angular resolution
9 × 9, while 729 × 452 and 11 × 11 respectively by the lab-developed LF camera.

Specifically, small patches in the same position of each view are extracted to
formulate the training LF data. The spatial patch size is 48 × 48 and the stride
is 20. If the angular upsampling factor is 3X, we remove the border views and
crop the original LF data to 7 × 7 views as ground truth, and then downsample
to 3 × 3 views as the input. For 2X angular upsampling, the original LF data are
just downsampled to 5 × 5 views. We cascade the proposed framework trained
for 2X to deal with 4X angular upsampling.

In total, over 105 training samples are collected. Similar to other SR meth-
ods, we only process the luminance Y channel in the YCrcb color space. Since
the proposed framework comprises two detail-restoration 3D CNNs connected
with angular conversion, operating firstly in row or column pattern is prone to
influence the accuracy of the final output. To alleviate such effect, we double the
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training datasets by adding a copy of each LF sample with permuted angular
dimensions.

The optimization of end-to-end training is conducted by the mini-batch
momentum Stochastic Gradient Descent (SGD) method with a batch size of
64, momentum of 0.9 and weight decay of 0.001. The kernels of the learnable
interpolation are initialized exactly like the bilinear upsampling. The filters of
3D CNNs are initialized from a zero-mean Gaussian distribution with standard
deviation 0.01 and all the bias are initialized to zero. The learning rate is ini-
tially set to 10−4 and then decreased by a factor of 0.1 every 10 epochs until the
validation loss converges. The proposed framework is implemented using Theano
package [2] and proceeded on a workstation with an Intel 3.6 GHz CPU and a
TiTan X GPU. Training takes within 8 h to converge.

3 Experimental Results and Applications

To validate the efficiency and effectiveness of the proposed framework, we
compare with two recent state-of-the-art approaches, i.e. the depth-dependent
method by Kalantari et al. [9] and depth-independent method by Wu et al.
[24]. Experiments are carried out on various datasets for evaluating the robust-
ness, including real-world scenes, synthetic scenes and biometrics data. The
peak signal-to-noise ratio (PSNR), the gray-scale structural similarity (SSIM)
and elapsed time per synthesized view are utilized to evaluate the algorithms
numerically.

3.1 Real-World Scenes

As to experiments on real-world scenes, we follow the protocols in [24] to recon-
struct 7 × 7 LF from 3 × 3 sparse views on 30 Scenes captured by Lytro Illum
in [9]. The performances of comparative methods [9,24] are obtained via imple-
menting source codes released by respective authors, and the parameters are
carefully tuned to maximize performances. For fair comparisons, all methods
run in the GPU mode and are proceeded on the same workstation.

Figure 4 depicts quantitative comparisons of the average PSNR and elapsed
time on 30 scenes [9]. It is easy to find out that the proposed framework performs
significantly better than other approaches: (1) greatly accelerates the process of
view synthesis (0.28 s), (2) strongly improves the image quality of reconstructed
4D LF (43.28 dB). As demonstrated by numerical results, the proposed frame-
work gains huge advantages in terms of both efficiency and effectiveness. More-
over, we conduct ablation experiments on 30 Scenes with variants of Pseudo
4DCNN. As shown in Table 1, if Fc equals to Fr, the results decrease 0.38dB
on average. Also, the results decrease 0.94 dB on average without prior sensitive
loss. It can be demonstrated that each component of Pseudo 4DCNN definitely
contributes to improving the performance.

For qualitative comparisons, we select two challenging outdoor scenes (Rock,
Flower) containing complex depth variations and occlusions as shown in Fig. 5.
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Fig. 4. Quantitative comparisons on real-world scenes (30 scenes [9]). The lateral axis
represents scene No. from 1 to 30. (a) Average PSNR statistics. The proposed frame-
work achieves 43.28 dB per LF scene on average, 5.85 dB higher than Kalantari et al.
[9] (37.43 dB) and 2.45 dB higher than Wu et al. [24] (40.83 dB). (b) Elapsed time
statistics. The proposed framework takes 0.28 s per synthesized view on average to
reconstruct 7 × 7 LF from 3 × 3 views (angular upsampling factor 3X) at the spatial
resolution of 625 × 434, nearly 30X faster than Kalantari et al. [9] (8.59 s) and 12X
faster than Wu et al. [24] (3.38 s). So the proposed framework greatly improves the
accuracy and accelerates the process of view synthesis for LF imaging.

The depth-dependent method in [9] is not sensitive to depth changes in small
areas, leading to large errors around object boundaries and depth discontinuities.
The “blur-restore-deblur” scheme in [24] fails to reconstruct plausible details for
small objects at a far distance, e.g. the white car in Rock, the background tree
in Flower. As shown in the last column, our results are closer to ground truth.
Enlarge and view these figures on screen for better comparisons. See
more comparisons in the supplement.

Table 1. Quantitative comparisons on 30 Scenes with variants of Pseudo 4DCNN.

PSNR (dB) SSIM

Pseudo-4DCNN full 43.28 0.9916

Same sub-networks (Fr = Fc) 42.90 0.9907

Without prior sensitive loss 42.34 0.9901

Without 2D learnable interpolation 40.15 0.9885

Without 3D detail-restoration CNN 39.01 0.9876

3.2 Synthetic Scenes

The synthetic experimental results are shown in Table 2, including two challeng-
ing scenes Kitchen and Museum from the LF datasets by Honauer et al. [7]. The
spatial resolution is 512 × 512 and angular resolution 9 × 9. The central 7 × 7
views are extracted as ground truth, and 3 × 3 sparse views are taken as input.



View Synthesis with Pseudo 4DCNN 351

Fig. 5. Qualitative comparisons on 30 scenes [9]. The ground truth view, error maps
in the Y channel, and close-ups of image patches are presented. (a) Ground Truth.
(b) Kalantari et al. [9] (c) Wu et al. [24] (d) Ours.

Transparent glasses in Museum and highlights in Kitchen are extremely diffi-
cult for view synthesis. The disparity estimator network in [9] fails to estimate
reasonable disparities for non-Lambertian surfaces, especially at the boundaries.
Significant artifacts are produced at the boundaries and geometry structures of
transparent surfaces can not be preserved (Fig. 6). The method in [24] recon-
structs better photo-realistic details than [9]. The proposed framework achieves
the best performance, which is quite robust to specular reflection properties.

Fig. 6. Qualitative Comparisons on synthetic scenes. (Kitchen and Museum)
(a) Ground Truth. (b) Kalantari et al. [9] (c) Wu et al. [24] (d) Ours.

Table 2. Quantitative comparisons on synthetic scenes (Kitchen and Museum).

Kitchen Museum

PSNR SSIM PSNR SSIM

Kalantari et al. [9] 32.13 0.9156 30.45 0.9097

Wu et al. [24] 35.57 0.9360 34.98 0.9344

Ours 38.12 0.9621 37.92 0.9559
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3.3 Application for Biometrics LF Data

For potential applications on biometrics, we capture a midsize LF dataset with
over 200 face scenes (Face) and 100 iris scenes (Iris). Face is captured using Lytro
Illum under natural lighting. Each scene contains 3 persons standing 0.2 m, 1 m,
3 m, and the faces are roughly 200 × 200, 100 × 100, 60 × 60 pixels on each
sub-aperture image. Iris is captured under near infrared lighting with our lab-
developed LF camera. Our LF camera is microlens-based and equipped with
240 um/f4 microlens and a 135 mm/f5.6 main lens. By setting the capturing
distance 0.8 m, the iris on each sub-aperture image is around 90 pixels. We
reconstruct 9 × 9 light fields from 5 × 5 sparse views on these biometrics LF
data.

The bottleneck of view synthesis on Face is that severe defocus blur arises
on the face outside depth of field (DOF). In Fig. 7, large errors around the eyes
are occurred by [9] and the eyelid area are over-smoothed by [24]. Although LF
cameras gain advantages in extending DOF that is beneficial for iris recognition,
to obtain a LF iris image is greatly influenced by the specular reflection of the
cornea region. Besides, the depth range of iris varies relatively small while the
textures are very rich. As a consequence, [9] produces over-smoothed results
without enough texture details on iris, and [24] recovers better textures of the
iris but can not preserve details on the glossy area of the face. In contrast, the
proposed framework obtains superior performances in both terms of efficiency
and effectiveness (Table 3).

Fig. 7. Qualitative comparisons on biometrics LF data (Face and Iris). (a) Ground
Truth. (b) Kalantari et al. [9] (c) Wu et al. [24] (d) Ours.

Table 3. Quantitative comparisons on biometrics LF data (Face and Iris).

Face Iris

PSNR SSIM Time (sec) PSNR SSIM Time (sec)

Kalantari et al. [9] 29.50 0.8660 724.48 25.17 0.8235 904.02

Wu et al. [24] 40.04 0.9624 262.38 34.98 0.9344 339.71

Ours 42.36 0.9869 23.49 40.14 0.9851 30.42
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3.4 Application for Depth Enhancement

We evaluate the accuracy and robustness of the proposed framework for depth
enhancement. Table 4 shows quantitative comparisons on various scenes as well
as challenging parts. It is observed that the depth maps with our reconstructed
LF are roughly the same as depth maps with ground truth LF. The proposed
framework will effectively contribute to depth enhancement of LF imaging.

Table 4. MSE statistics of depth estimation on the 4D LF benchmark [7] using the
algorithm of Wang et al. [20].

Scenes Wu et al. [24] GT LF Ours

Backgammon Overall 0.1471 0.1307 0.1181

Foreground fattening 0.1947 0.1680 0.1601

Pyramids Overall 0.0214 0.0191 0.0193

Pyramids 0.0117 0.0116 0.0111

Boxes Overall 0.0512 0.0497 0.0507

Fine surrounding 0.0312 0.0287 0.0303

Dino Overall 0.0186 0.0159 0.0159

Discontinuities 0.0174 0.0161 0.0163

4 Conclusion

In this paper, an end-to-end learning framework is proposed to directly synthe-
size novel views of dense 4D LF from sparse input views. To directly process high
dimensional LF data, we assemble 2D strided convolutions operated on stacked
EPIs and two detail-restoration 3D CNNs connected with angular conversion to
build Pseudo 4DCNN. The proposed framework is well formulated to be entirely
differentiable that can be trained with standard backpropagation. The proposed
framework outperforms other SOTA approaches on various LF scenes. What’s
more, it greatly accelerates the process of view synthesis for LF imaging.
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